
NMOS 6510
Unintended

Opcodes
no more secrets

(v0.92 - 24/12/17)

(w) 2013-2017 groepaz/solution, all rights reversed

http://hitmen.eu/

Contents

Preface...I
Scope of this Document..I
Intended Audience..I
License..I
What you get...II
Naming Conventions...III

Address-Mode Abbreviations...III
Mnemonics..III

Unintended Opcodes..1
Overview..1
Types..3

Combinations of two operations with the same addressing mode..3
Combinations of an immediate and an implied command..3
Combinations of STA/STX/STY..4
Combinations of STA/TXS and LDA/TSX..4
No effect..4
Lock-up...4

Stable Opcodes..5
SLO (ASO)...5

Example:...6
RLA (RLN)...7

Example: scroll over a background layer...8
SRE (LSE)...9

Example: 8bit 1-of-8 counter...10
RRA (RRD)...11
SAX (AXS, AAX)...12

Example: store values with mask...13
Example: update Sprite Pointers..13

LAX..14
Example: load A and X with same value..15

DCP (DCM)..16
Example: decrementing loop counter...17
Example: decrementing 16bit counter..17

ISC (ISB, INS)..18
Example: incrementing loop counter...19
Example:...19

ANC..20
Example: implicit enforcement of carry flag state...21
Example: remembering a bit..21

ALR (ASR)...22
Example:...22
Example: fetch 2 bits from a byte..23
Example:...23

ARR..24
Example: rotating 16 bit values..25
Example:...26
Example: shift zeros or ones into accumulator..26

SBX (AXS, SAX)...27
Example: decrement X by more than 1..28

Contents

Example: decrement nibbles..29
Example: apply a mask to an index..30

SBC (USBC)...31
LAS (LAR)...32

Example: cycle an index within bounds...33
NOP (NPO)...34
NOP (DOP, SKB)..34
NOP (TOP, SKW)...35

Example: acknowledge IRQ...36
JAM (KIL, HLT, CIM)..37

Example: stop execution..37
Unstable Opcodes..38

'unstable address high byte' group...38
SHA (AXA, AHX)...39

Example: SAX abs, y...40
Example: SAX (zp), y..40

SHX (A11, SXA, XAS)..41
Example: STX abs, y...42

SHY (A11, SYA, SAY)...43
Example: STY abs, x...44

TAS (XAS, SHS)..45
'Magic Constant' group...46

ANE (XAA)...46
Example: clear A..47
Example: A = X AND immediate..47
Example: read the 'magic constant'..47

LAX #imm (ATX, LXA, OAL, ANX)...48
Example: clear A and X...49
Example: load A and X with same value...49
Example: read the 'magic constant'..49

Unintended addressing modes..50
Absolute Y Indexed (R-M-W)...50
Zeropage X Indexed Indirect (R-M-W)...51
Zeropage Indirect Y Indexed (R-M-W)...52

Appendix..53
Opcode naming in different Assemblers..53
Combined Examples..54

negating a 16bit number..54
Example..54
Multiply 8bit * 2 ^ n with 16bit result..55
6 sprites over FLI..56

References..58
Greets and Thanks..59
Wanted...60
History...61

Preface
'Back in the days' so called 'illegal' opcodes were researched independently by different parties, and
detail knowledge about them was considered 'black magic' for many conventional programmers.
They first appeared in the context of copy protection schemes, so keeping the knowledge secret was
crucial.

When some time later some of these opcodes were documented by various book authors and
magazines, a lot of misinformation was spread and a number of weird myths were born. It took
another few years until some brave souls started to systematically investigate each and every
opcode, and until the mid 90s that Wolfgang Lorenz came up with his test suite that finally
contained elaborated test programs for them.

Still, a few opcodes were considered witchcraft for a while (the so called 'unstable' ones), until other
people finally de-capped an actual CPU and solved the remaining riddles.

This document tries to present the current state of the art in a readable form, and is in large parts the
result of pasting existing documents together and editing them (see References)

24/12/17 groepaz/solution

Scope of this Document

To make things simple, the rest of this document refers specifically to the MOS6510 (and the
CSG8500) in the Commodore 64, and to the CSG8502 found in the Commodore 128.

However, most of the document applies to MOS6502 as well. Also MOS Technology licensed
Rockwell and Synertek to second source the 6502 microprocessor and support components,
meaning they used the same masks for manufacturing, so their chips should behave (exactly) the
same. The 6502C “Sandy” found in Atari 8-bit computers also seems to work the same.

Some of the 'unstable' opcodes are known to work slightly different on 6502 equipped machines,
but that is just the result of the RDY line not being used in them.

This document does not apply to the 65C02, 652SC02, 65CE02, 65816 etc. (These are all not 100%
6502 compatible)

Whether related CPUs like the 7501/8501 used in the CBM264 series behaves the same has not
been tested (but is likely – feedback welcomed).

Intended Audience

This document is not for beginners (such as yourself) *. The reader should be familiar with 6502
assembly, and in particular is expected to know how the regular opcodes and CPU flags work
exactly. For those that do not feel confident enough, having a reference to the regular opcodes, flags
behaviour and things like decimal mode at hand is probably highly recommended.

*) Wording change suggested by Poopmaster

License

This documentation is free as in free beer. All rights reversed.

If using the information contained here results in ultra realistic smoke effects and/or loss of mental
health, it is entirely your fault. You have been warned.

- I -

What you get

• Reference chart of all 'illegal' opcodes

• Cycle by cycle breakdown of the 'illegal' addressing modes

• For every 'illegal' opcode:

◦ Formal description of each opcode, including flags etc.

◦ General description of operation and eventual quirks

◦ equivalent 'legal' code

◦ All documented behaviour backed up by test code. The referenced test code can be
found in the VICE test-programs repository at

http://vice-emu.svn.sourceforge.net/viewvc/vice-emu/testprogs/

◦ examples for real world usage, if available

- II -

http://vice-emu.svn.sourceforge.net/viewvc/vice-emu/testprogs/

Naming Conventions

A Accumulator

X X-register

Y Y-register

SP Stack-pointer

PC Program Counter

NV-BDIZC Flags in the status-register

{imm} An immediate value

{addr} Effective address given in the opcode (including indexing)

{H+1} High byte of the address given in the opcode, plus 1

{CONST} 'Magic' chip and/or temperature dependent constant value

& Binary AND

| Binary OR

In the various tables colours GREEN, YELLOW and RED are used in the following way:

GREEN indicates all completely stable opcodes, which can be used without special precautions,
YELLOW marks partially unstable opcodes which need some special care and RED is reserved for
the remaining few which are highly unstable and can only be used with severe restrictions.

Address-Mode Abbreviations

AA Absolute Address

AAH Absolute Address High

AAL Absolute Address Low

DO Direct Offset

Mnemonics

This document lists all previously used mnemonics for each opcode in the headlines of their
description, and then one variant which the author was most familiar with is used throughout the
rest of the text. A table that shows which mnemonics are supported by some popular assemblers can
be found in the appendix.

- III -

Unintended Opcodes

Overview
Opc. imp imm zp zpx zpy izx izy abs abx aby Function N V - B D I Z C

SLO $07 $17 $03 $13 $0F $1F $1B
{addr} = {addr} * 2

A = A or {addr}
X X X

RLA $27 $37 $23 $33 $2F $3F $3B
{addr} = {addr}

rol A = A and {addr}
X X X

SRE $47 $57 $43 $53 $4F $5F $5B
{addr} = {addr} / 2

A = A eor {addr}
X X X

RRA $67 $77 $63 $73 $6F $7F $7B
{addr} = {addr}

ror A = A adc {addr}
X X X X

SAX $87 $97 $83 $8F {addr} = A & X

LAX $A7 $B7 $A3 $B3 $AF $BF A,X = {addr} X X

DCP $C7 $D7 $C3 $D3 $CF $DF $DB
{addr} = {addr} - 1

A cmp {addr}
X X X

ISC $E7 $F7 $E3 $F3 $EF $FF $FB
{addr} = {addr} + 1

A = A - {addr}
X X X X

ANC $0B A = A & #{imm} X X X

ANC $2B A = A & #{imm} X X X

ALR $4B A = (A & #{imm}) / 2 X X X

ARR $6B A = (A & #{imm}) / 2 X X X X

SBX $CB X = A & X - #{imm} X X X

SBC $EB A = A - #{imm} X X X X

SHA $93 $9F {addr} = A & X & {H+1}

SHY $9C {addr} = Y & {H+1}

SHX $9E {addr} = X & {H+1}

TAS $9B
SP = A & X

{addr} = SP & {H+1}

LAS $BB A,X,SP = {addr} & SP X X

LAX $AB A,X = (A | CONST) & #{imm} X X

ANE $8B A = (A | CONST) & X & #{imm} X X

- 1 -

Opc. imp imm zp zpx zpy izx izy abs abx aby Function N V - B D I Z C

NOP $1A $80 $04 $14 $0C $1C No effect

NOP $3A $82 $44 $34 $3C No effect

NOP $5A $C2 $64 $54 $5C No effect

NOP $7A $E2 $74 $7C No effect

NOP $DA $89 $D4 $DC No effect

NOP $FA $F4 $FC No effect

Opc. - - - - - - - - - - - - Function N V - B D I Z C

JAM $02 $12 $22 $32 $42 $52 $62 $72 $92 $B2 $D2 $F2 CPU lock-up

- 2 -

Types

Combinations of two operations with the same addressing mode

Opcode Function

SLO {addr} ASL {addr} + ORA {addr}

RLA {addr} ROL {addr} + AND {addr}

SRE {addr} LSR {addr} + EOR {addr}

RRA {addr} ROR {addr} + ADC {addr}

SAX {addr} STA {addr} + STX {addr} store A & X into {addr}

LAX {addr} LDA {addr} + LDX {addr}

DCP {addr} DEC {addr} + CMP {addr}

ISC {addr} INC {addr} + SBC {addr}

Combinations of an immediate and an implied command

Opcode Function

ANE #{imm} TXA + AND #{imm}

LAX #{imm} LDA #{imm} + TAX

ANC #{imm} AND #{imm} + (ASL)

ANC #{imm} AND #{imm} + (ROL)

ALR #{imm} AND #{imm} + LSR

ARR #{imm} AND #{imm} + ROR

SBX #{imm} CMP #{imm} + DEX put A & X minus #{imm} into X

SBC #{imm} SBC #{imm} + NOP

- 3 -

Combinations of STA/STX/STY

Opcode Function

SHA {addr} stores A & X & H into {addr}

SHX {addr} stores X & H into {addr}

SHY {addr} stores Y & H into {addr}

Combinations of STA/TXS and LDA/TSX

Opcode Function

TAS {addr} stores A & X into SP and A & X & H into {addr}

LAS {addr} stores {addr} & SP into A, X and SP

No effect

Bit configuration does not allow any operation on these ones:

Opcode Function

NOP no effect

NOP #{imm} Fetches #{imm} but has no effects.

NOP {addr} Fetches {addr} but has no effects.

Lock-up

Opcode Function

JAM Halt the CPU. The buses will be set to $FF.

- 4 -

Stable Opcodes

SLO (ASO)

Type: Combination of two operations with the same addressing mode (Sub-instructions: ORA,
ASL)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$07 SLO zp {addr} = {addr} * 2 A = A or {addr} 2 5 X X X

$17 SLO zp, x 2 6 X X X

$03 SLO (zp, x) 2 8 X X X

$13 SLO (zp), y 2 8 X X X

$0F SLO abs 3 6 X X X

$1F SLO abs, x 3 7 X X X

$1B SLO abs, y 3 7 X X X

Operation: Shift left one bit in memory, then OR accumulator with memory.

Test code: Lorenz-2.15/asoa.prg, Lorenz-2.15/asoax.prg, Lorenz-
2.15/asoay.prg, Lorenz-2.15/asoix.prg, Lorenz-2.15/asoiy.prg,
Lorenz-2.15/asoz.prg, Lorenz-2.15/asozx.prg

- 5 -

Example:

SLO $C010 ;0F 10 C0

Equivalent Instructions:

ASL $C010
ORA $C010

Example:

- 6 -

Instead of:
ASL data+2 ; A is zero before reaching here
ROL data+1
ROL data+0
LDA data+2

you can write: (which is shorter)

SLO data+2 ; A is zero before reaching here
ROL data+1
ROL data+0

RLA (RLN)

Type: Combination of two operations with the same addressing mode (Sub-instructions: AND,
ROL)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$27 RLA zp {addr} = rol {addr} A = A and {addr} 2 5 X X X

$37 RLA zp, x 2 6 X X X

$23 RLA (zp, x) 2 8 X X X

$33 RLA (zp), y 2 8 X X X

$2F RLA abs 3 6 X X X

$3F RLA abs, x 3 7 X X X

$3B RLA abs, y 3 7 X X X

Operation: Rotate one bit left in memory, then AND accumulator with memory.

Test code: Lorenz-2.15/rlaa.prg, Lorenz-2.15/rlaax.prg, Lorenz-
2.15/rlaay.prg, Lorenz-2.15/rlaix.prg, Lorenz-2.15/rlaiy.prg,
Lorenz-2.15/rlaz.prg, Lorenz-2.15/rlazx.prg

- 7 -

Example:

RLA $FC,X ;37 FC

Equivalent Instructions:

ROL $FC,X
AND $FC,X

Example: scroll over a background layer

- 8 -

Lets say you want to create a scroller that moves text over some fixed background graphics.
Suppose the data of the sliding text is stored at scrollgfx and the data of the fixed background
at backgroundgfx. The actual data that is displayed is located at buffer.

Combining the sliding and fixed data without RLA would go something like (for the rightmost
byte of the top line of the gfx data) this:

ROL scrollgfx ; shift left (with carry)
LDA scrollgfx
AND backgroundgfx ; combine with background
STA buffer

… which takes 18 cycles in 16 bytes

instead you can write:

LDA backgroundgfx
RLA scrollgfx ; shift left and combine with bg
STA buffer

… which takes 14 cycles in 12 bytes

SRE (LSE)

Type: Combination of two operations with the same addressing mode (Sub-instructions: EOR,
LSR)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$47 SRE zp {addr}={addr}/2 A:=A eor {addr} 2 5 X X X

$57 SRE zp, x 2 6 X X X

$43 SRE (zp, x) 2 8 X X X

$53 SRE (zp), y 2 8 X X X

$4F SRE abs 3 6 X X X

$5F SRE abs, x 3 7 X X X

$5B SRE abs, y 3 7 X X X

Operation: Shift right one bit in memory, then EOR accumulator with memory.

Test code: Lorenz-2.15/lsea.prg, Lorenz-2.15/lseax.prg, Lorenz-
2.15/lseay.prg, Lorenz-2.15/lseix.prg, Lorenz-2.15/lseiy.prg,
Lorenz-2.15/lsez.prg, Lorenz-2.15/lsezx.prg

- 9 -

Example:

SRE $C100,X ;5F 00 C1

Equivalent Instructions:

LSR $C100,X

EOR $C100,X

Example: 8bit 1-of-8 counter

- 10 -

SRE shifts the content of a memory location to the right and EORs the content with A, while SLO
shifts to the left and does an OR instead of EOR.

So this is nice to combine the previous described 8 bit counter with for e.g. setting pixels:

LDA #$80

STA pix

...

LDA (zp),y

SRE pix ;shift mask one to the right

;and eor mask with A

BCS advance_column ;did the counter under-run?

;so advance column

STA (zp),y

...

advance_column:

ROR pix ;reset counter

ORA #$80 ;set first pixel

STA (zp),y

LDA zp ;advance column

;CLC ;is still clear

ADC #$08

STA zp

BCC +

INC zp+1

+

RRA (RRD)

Type: Combination of two operations with the same addressing mode (Sub-instructions: ADC,
ROR)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$67 RRA zp {addr} = ror {addr} A = A adc {addr} 2 5 X X X X

$77 RRA zp, x 2 6 X X X X

$63 RRA (zp, x) 2 8 X X X X

$73 RRA (zp), y 2 8 X X X X

$6F RRA abs 3 6 X X X X

$7F RRA abs, x 3 7 X X X X

$7B RRA abs, y 3 7 X X X X

Operation: Rotate one bit right in memory, then add memory to accumulator (with carry).

This instruction inherits the decimal flag dependency from ADC.

Test code: Lorenz-2.15/rraa.prg, Lorenz-2.15/rraax.prg, Lorenz-
2.15/rraay.prg, Lorenz-2.15/rraix.prg, Lorenz-2.15/rraiy.prg,
Lorenz-2.15/rraz.prg, Lorenz-2.15/rrazx.prg, 64doc/roradc.prg

- 11 -

Example:

RRA $030C ;6F 0C 03

Equivalent Instructions:

ROR $030C
ADC $030C

SAX (AXS, AAX)

Type: Combination of two operations with the same addressing mode (Sub-instructions: STA, STX)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$87 SAX zp {addr} = A & X 2 3

$97 SAX zp, y 2 4

$83 SAX (zp, x) 2 6

$8F SAX abs 3 4

Operation: AND the contents of the A and X registers (without changing the contents of either
register) and stores the result in memory.

'The SAX instruction decodes to two instructions (STA and STX) whose behaviour is identical
except that one hits the output-enable signal for the accumulator, and the other hits the output-
enable signal for the X register. Although it would seem that this would cause ambiguous
behaviour, it turns out that during one half of each cycle the internal operand-output bus is set to
all '1's, and the read-enable signals for the accumulator and X register (and Y register, stack
pointer, etc.) only allow those registers to set the internal operand-output bus bits to '0'. Thus, if a
bit is zero in either the accumulator or the X register, it will be stored as zero; if it's set to '1' in
both, then nothing will pull down the bus so it will output '1'.'

Test code: Lorenz-2.15/axsa.prg, Lorenz-2.15/axsix.prg, Lorenz-
2.15/axsz.prg, Lorenz-2.15/axszy.prg

Note that two addressing modes that SAX is missing, absolute Y indexed and indirect Y indexed,
can be simulated by using the SHA instruction, see SHA (AXA, AHX).

- 12 -

Example:

SAX $FE ;87 FE

Equivalent Instructions:

PHP ; save flags and accumulator
PHA
STX $FE
AND $FE
STA $FE
PLA ; restore flags and accumulator
PLP

Note that SAX does not affect any flags in the processor status register, and does not modify A/X.
It would also not actually use the stack, which is only needed to mimic the behaviour with legal
opcodes in this example.

Example: store values with mask

Example: update Sprite Pointers

- 13 -

This opcode is ideal to set up a permanent mask and store values combined with that mask:

LDX #$aa ;set up mask

LDA $1000,y ;load A

SAX $80,y ;store A & $aa

Often you need to set up all 8 sprite pointers in as few cycles as possible, this could be done like
this:

LDA #$01

LDX #$fe

SAX screen + $3f8 ;00

STA screen + $3f9 ;01

LDA #$03

SAX screen + $3fa ;02

STA screen + $3fb ;03

LDA #$05

SAX screen + $3fc ;04

STA screen + $3fd ;05

LDA #$07

SAX screen + $3fe ;06

STA screen + $3ff ;07

LAX

Type: Combination of two operations with the same addressing mode (Sub-instructions: LDA,
LDX)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$A7 LAX zp A,X = {addr} 2 3 X X

$B7 LAX zp, y 2 4 X X

$A3 LAX (zp, x) 2 6 X X

$B3 LAX (zp), y 2 5 (+1) X X

$AF LAX abs 3 4 X X

$BF LAX abs, y 3 4 (+1) X X

Operation: Load both the accumulator and the X register with the contents of a memory location.

Test code: Lorenz-2.15/laxa.prg, Lorenz-2.15/laxay.prg, Lorenz-
2.15/laxix.prg, Lorenz-2.15/laxiy.prg, Lorenz-2.15/laxz.prg,
Lorenz-2.15/laxzy.prg

- 14 -

Example:

LAX $8400,Y ;BF 00 84

Equivalent Instructions:

LDA $8400,Y
LDX $8400,Y

Example: load A and X with same value

- 15 -

Loading A and X with the same value is ideal if you manipulate the original value, but later on
need the value again. Instead of loading it again you can either transfer it again from the other
register, or combine A and X again with another illegal opcode.

LAX $1000,y ;load A and X with value from $1000,y

EOR #$80 ;manipulate A

STA ($fd),y ;store A

LDA #$f8 ;load mask

SAX jump+1 ;store A & X

Also one could so:

LAX $1000,y ;load A and X with value from $1000,y

EOR #$80 ;manipulate A

STA ($fd),y ;store A

TXA ;fetch value again

EOR #$40 ;manipulate

STA ($fb),y ;store

DCP (DCM)

Type: Combination of two operations with the same addressing mode (Sub-instructions: CMP,
DEC)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$C7 DCP zp {addr} = {addr} - 1 A cmp {addr} 2 5 X X X

$D7 DCP zp, x 2 6 X X X

$C3 DCP (zp, x) 2 8 X X X

$D3 DCP (zp), y 2 8 X X X

$CF DCP abs 3 6 X X X

$DF DCP abs, x 3 7 X X X

$DB DCP abs, y 3 7 X X X

Operation: Decrement the contents of a memory location and then compare the result with the A
register.

Test code: Lorenz-2.15/dcma.prg, Lorenz-2.15/dcmax.prg, Lorenz-
2.15/dcmay.prg, Lorenz-2.15/dcmix.prg, Lorenz-2.15/dcmiy.prg,
Lorenz-2.15/dcmz.prg, Lorenz-2.15/dcmzx.prg, 64doc/dincsbc-
deccmp.prg

- 16 -

Example:

DCP $FF ;C7 FF

Equivalent Instructions:

DEC $FF
CMP $FF

Example: decrementing loop counter

Example: decrementing 16bit counter

- 17 -

X1: .byte $07

x2: .byte $1a

;an effect

-

...

DEC x2

LDA x2

CMP x1

BNE -

can be written as:

;an effect

-

...

LDA x1

DCP x2 ;decrements x2 and compares x2 to A

BNE -

For decrementing a 16 bit pointer it is also of good use:

LDA #$ff

DCP ptr

BNE *+4

DEC ptr+1

;carry is set always for free

ISC (ISB, INS)

Type: Combination of two operations with the same addressing mode (Sub-instructions: SBC, INC)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$E7 ISC zp {addr} = {addr} + 1 A = A - {addr} 2 5 X X X X

$F7 ISC zp, x 2 6 X X X X

$E3 ISC (zp, x) 2 8 X X X X

$F3 ISC (zp), y 2 8 X X X X

$EF ISC abs 3 6 X X X X

$FF ISC abs, x 3 7 X X X X

$FB ISC abs, y 3 7 X X X X

Operation: Increase memory by one, then subtract memory from accumulator (with borrow).

This instruction inherits the decimal flag dependency from SBC.

Test code: Lorenz-2.15/insa.prg, Lorenz-2.15/insax.prg, Lorenz-
2.15/insay.prg, Lorenz-2.15/insix.prg, Lorenz-2.15/insiy.prg,
Lorenz-2.15/insz.prg, Lorenz-2.15/inszx.prg, 64doc/dincsbc.prg

- 18 -

Example:

ISC $FF ;E7 FF

Equivalent Instructions:

INC $FF
SBC $FF

Example: incrementing loop counter

Example:

- 19 -

Instead of:

INC counter

LDA counter

CMP #ENDVALUE

BNE next

you can write: (which saves a cycle when counter is in zero-page)

LDA #ENDVALUE

SEC

ISC counter

BNE next

Instead of:

; A is zero and C=0 before reaching here
INC buffer, x
LDA buffer, x

you can write: (which saves a byte if buffer is in regular memory, and is faster)

; A is zero and C=0 before reaching here
ISB buffer, x
EOR #$ff

ANC

Type: Combination of an immediate and an implied command (Sub-instructions: AND, ASL/ROL)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$0B ANC #imm A = A & #{imm} 2 2 X X X

$2B ANC #imm A = A & #{imm} 2 2 X X X

Operation: ANDs the contents of the A register with an immediate value and then moves bit 7 of A
into the Carry flag. This opcode works basically identically to AND #imm. except that the Carry
flag is set to the same state that the Negative flag is set to. (bit 7 is put into the carry, as if the
ASL/ROL would have been executed)

Test code: Lorenz-2.15/ancb.prg

- 20 -

Example:

ANC #$AA ;2B AA

Equivalent Instructions:

AND #$AA

; ROL A – not actually executed, set C as if it was

Example: implicit enforcement of carry flag state

Example: remembering a bit

- 21 -

You can use ANC to simply putting the highest bit of a byte into the carry flag without affecting a
register (by using ANC #$FF). This can be useful sometimes since not that many instructions
destroy the (C)arry flag as well as the (N)egative flag (mainly mathematical operations, shifting
operations and comparison operations), in order to 'remember' this information during the
execution of other code (such as some LDA/STA stuff).

A command that does this too is CMP #$80 (as well as CPX and CPY), which non destructively
puts the high bit of a register into Carry as well.

When using an AND instruction before an addition (or any other operation where you might want
to know the state of the carry flag), you might save two cycles (not having to do CLC or SEC) by
using ANC instead of AND. Since a cleared high bit in the value used with the ANC instruction
always leads to a unset carry flag after this operation, you can take advantage of that. An example:

LDA value

ANC #$0f ;Carry flag is always set to 0

;after this op.

ADC value2 ;Add a value. CLC not needed!

STA result

Another case like this is when you want to set the A register to #$00 specifically, and also happen
to want to have the carry cleared:

ANC #0 ;Carry always cleared after this op,

;and A register always set to zero.

ALR (ASR)

Type: Combination of an immediate and an implied command (Sub-instructions: AND, LSR)

Opc. Mnemonic Function Size Cycles N V B D I Z C

$4B ALR #imm A = (A & #{imm}) / 2 2 2 X X X

Operation: AND the contents of the A register with an immediate value and then LSRs the result.

Test code: Lorenz-2.15/alrb.prg

Example:

- 22 -

Example:

ALR #$FE ;4B FE

Equivalent Instructions:

AND #$FE

LSR A

Whenever you need to shift and influence the carry afterwards, you can use ALR for that, and if
you even need to apply an and-mask beforehand, you are extra lucky and can do 3 commands by
that:

ALR #$fe ;-> A & $fe = $fe -> lsr -> carry is cleared

; as bit 0 was not set before lsr

… same as …

AND #$ff

LSR

CLC

Example: fetch 2 bits from a byte

Example:

- 23 -

Another nice trick to transform a single bit into a new value (good for adding offsets depending
on the value of a single bit) offset is the following:

LDA xposl ;load a value

ALR #$01 ;move bit 1 to carry and clear A

BCC +

LDA #$3f ;carry is set

+

ADC #stuff ;things will work sane, as offset

;includes already the carry

As you can see we have now either loaded $00 or $40 (carry!) to A depending on the state of bit 0,
that is ideal for e.g. when we want to load from a different bank depending on if a position is odd
or even. As you see, the above example is even faster than this (as the shifting always takes 6
cycles, whereas the above example takes 5/6 cycles):

LDA xposl

ALR #$01

ROR

LSR

ADC #stuff ;things will work sane as carry is

;always clear (upper bits are masked)

LDA #%10110110

LSR

ALR #$03*2

This will mask out and shift down bits 2 and 3. Note that the mask is applied before shifting,
therefore the mask is multiplied by two.

ARR

Type: Combination of an immediate and an implied command (Sub-instructions: AND, ROR)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$6B ARR #imm A:=(A&#{imm})/2 2 2 X X X X

note to ARR: part of this command are some ADC mechanisms. following effects appear after AND
but before ROR: the V-Flag is set according to (A and #{imm})+#{imm}, bit 0 does NOT go into
carry, but bit 7 is exchanged with the carry.

ARR ANDs the accumulator with an immediate value and then rotates the content right. The
resulting carry is however not influenced by the LSB as expected from a normal rotate. The Carry
and the state of the overflow-flag depend on the state of bit 6 and 7 before the rotate occurs, but
after the and-operation has happened, and will be set like shown in the following table:

Bit 7 Bit 6 Carry Overflow

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Test code: CPU/asap/cpu_decimal.prg, Lorenz-2.15/arrb.prg

The following assumes the decimal flag is clear. You see, the sub-instruction for ARR ($6B) is in
fact ADC ($69), not AND. While ADC is not performed, some of the ADC mechanics are evident.
Like ADC, ARR affects the overflow flag. The following effects occur after ANDing but before
RORing. The V flag is set to the result of exclusive ORing bit 7 with bit 6. Unlike ROR, bit 0 does
not go into the carry flag. The state of bit 7 is exchanged with the carry flag. Bit 0 is lost. All of
this may appear strange, but it makes sense if you consider the probable internal operations of ADC
itself.

- 24 -

Example:

ARR #$7F ;6B 7F

Equivalent Instructions:

AND #$7F
ROR A ; flags are different with ARR, see the

; above table

Example: rotating 16 bit values

- 25 -

LDA #>addr

LSR

STA $fc

ARR #$00 ;A = A & $00 -> ror A

STA $fb

… is the same as …

LDA #>addr

LSR

STA $fc

LDA #$00

ROR

STA $fb

Note: Again, you can influence the final state of the carry by either using #$00 or #$01 for the
LDA ($00 or $80 in case of ARR, but the later only if A has bit 7 set as well, so be carefully here).

Example:

Example: shift zeros or ones into accumulator

- 26 -

If you need to load a register depending on some branch, you might be able to save some cycles.
Imagine you have the following to load Y depending on the state of the carry:

CMP $1000

BCS +

LDY #$00

BEQ ++ ; jump always

+

LDY #$80

++

This can be solved in less cycles and less memory:

CMP $1000

ARR #$00

TAY

Due to the fact that the carry resembles the state of bit 7 after ARR is executed, one can
continuously shift in zeroes or ones into a byte:

LDA #$80

SEC

ARR #$ff ; -> A = $c0 -> sec

ARR #$ff ; -> A = $e0 -> sec

ARR #$ff ; -> A = $f0 -> sec

...

LDA #$7f

CLC

ARR #$ff ; -> A = $3f -> clc

ARR #$ff ; -> A = $1f -> clc

ARR #$ff ; -> A = $0f -> clc

SBX (AXS, SAX)

Type: Combination of an immediate and an implied command (Sub-instructions: CMP, DEX)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$CB SBX #imm X = A & X - #{imm} 2 2 X X X

Operation: SBX ANDs the contents of the A and X registers (leaving the contents of A intact),
subtracts an immediate value, and then stores the result in X. ... A few points might be made about
the action of subtracting an immediate value. It actually works just like the CMP instruction, except
that CMP does not store the result of the subtraction it performs in any register. This subtract
operation is not affected by the state of the Carry flag, though it does affect the Carry flag. It does
not affect the Overflow flag. (Flags are set like with CMP, not SBC)

Another property of this opcode is that it doesn't respect the decimal mode, since it is derived from
CMP rather than SBC. So if you need to perform table lookups and arithmetic in a tight interrupt
routine there's no need to clear the decimal flag in case you've got some code running that operates
in decimal mode.

Test code: Lorenz-2.15/sbxb.prg, 64doc/sbx.prg, 64doc/vsbx.prg,
64doc/sbx-c100.prg

- 27 -

Example:

SAX #$5A ;CB 5A

Equivalent Instructions:

STA $02
TXA
AND $02
SEC
SBC #$5A
TAX
LDA $02

Note: Memory location $02 would not be altered by the SAX opcode.

Example:

SBX #$5A ;CB 5A

Equivalent Instructions:

STA $02 ; save accumulator
TXA ; hack because there is no 'AND WITH X'
AND $02 ; instruction
CMP #$5A ; set flags like CMP
PHP ; save flags
SEC
CLD ; subtract without being affected by
SBC #$5A ; decimal mode
TAX
LDA $02 ; restore accumulator
PLP ; restore flags

Note: SBX is not easily expressed entirely correct using legal opcodes. Memory location $02
would not be altered by the SBX opcode, and it would not use the stack.

Example: decrement X by more than 1

- 28 -

Sometimes you need/want to decrease the X register by more than one. That is often done by the
following piece of code:

TXA

SEC

SBC #$xx ;where xx is (obviously) the value

;to decrease by

TAX

This procedure takes 8 cycles (and 5 bytes in memory). If the value of the carry flag is always
known at this point in the code, it can be removed and the snippet would then take 6 cycles (and 4
bytes in memory). However, you can use SBX like this:

And the modified code snippet using SBX instead looks like this:

LDA #$ff ;Next opcode contains a implicit AND with

;the A register, so turn all bits ON!

SBX #$xx ;where xx is the value to decrease by

This code kills the A register of course, but so does the 'standard' version above. It can be made
even shorter by using a 'txa' instruction instead of the 'lda #$ff'. That works since X and A will be
equal after the 'txa', and ANDing a value with itself produces no change, hence the AND effect of
SBX is 'disarmed' and the subtraction will proceed as expected:

TXA

SBX #$xx

Note that in this case you do not have to worry about the carry flag at all, and all in all the whole
procedure takes only 4 cycles (and 3 bytes in memory)

Example: decrement nibbles

- 29 -

Imagine you have a byte that is divided into two nibbles (just what you often use in 4×4 effects),
now you want to decrement each nibble, but when the low nibble underflows, this will decrement
the high nibble as well, here the SBX command can help to find out about that special case:

LDA $0400,y ;load value

LDX #$0f ;set up mask

SBX #$00 ;check if low nibble underflows

; -> X = A & $0f

BNE + ;all fine, decrement both nibbles

;the cheap way, carry is set!

SBC #$f0 ;do wrap around by hand

SEC

+

SBC #$11 ;decrement both nibbles,

;carry is set already by sbx

 … can be substituted by …

LDA #$0f ;set up mask beforehand,

;can be reused for each turn

STA $02

LDA $0400,y

BIT $02 ;apply mask without destroying A

BNE +

CLC

ADC #$10

+

SEC ;we need to set carry

SBC #$11

Example: apply a mask to an index

- 30 -

Furthermore, the SBX command can also be used to apply a mask to an index easily:

LDX #$03 ;mask

LDA val1 ;load value

SBX #$00 ;mask out lower 2 bits -> X

LSR ;A is untouched, so we can continue

;doing stuff with A

LSR

STA val1

LDA colours,x ;fetch colour from table

instead of (which takes 3 cycles more):

LDA val1

AND #$03

TAX ;set up index

LSR val1 ;A is clobbered, so shift direct

LSR val1

LDA colours,x

The described case makes it easy to decode 4 multicolour pixel pairs by always setting up an
index from the lowest two bits and fetching the appropriate colour from a previously set up table.

SBC (USBC)

Type: Combination of an immediate and an implied command (Sub-instructions: SBC, NOP)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$EB SBC #imm A = A - #{imm} 2 2 X X X X

Operation: subtract immediate value from accumulator with carry. Same as the regular SBC.

Test code: Lorenz-2.15/sbcb-eb.prg

- 31 -

LAS (LAR)

Type: Combinations of STA/TXS and LDA/TSX

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$BB LAS abs,y A,X,SP = {addr} & SP 3 4 (+1) X X

Operation: AND memory with stack pointer, transfer result to accumulator, X register and stack
pointer.

Test code: CPU/asap/cpu_las.prg, Lorenz-2.15/lasay.prg

Note: LAS is called as 'probably unreliable' in one source - this does not seem to be the case though

It can be the case that the stack is not used in a main routine, since it is cheaper to store things in
the zeropage. Of course when a subroutine is called or an interrupt triggers the return address (and
status register in case of an IRQ) is stored on the stack, but after returning to the main loop the
stackpointer (SP) is back to the same value again. This means that you can change the SP at will in
the main loop without messing things up. For example, you can use it as temporary storage of the X
register with TXS/TSX. This makes it possible to use LAS (and TAS).

- 32 -

Example:

LAS $C000, Y ;BB AA

Equivalent Instructions:

TSX
TXA
AND $C000, Y
TAX
TXS

Example: cycle an index within bounds

- 33 -

If you want to cycle an index and wrap around to zero at a number that is a power of two, you
could do that with LAS. For example to cycle from 0-15, suppose we start with SP=$f7 (any value
will work):

LAS mask,y ; if Mask is one page filled with $0f,
; this brings the SP to $07 (and A and X
; as well) for any Y.

DEX ; X = $06

TXS ; SP is now $06, so the next time
; 'lda List,x' will pick the next value

LDA table, x ; use X as index

SP and X after the LAS instruction will always remain in the range 0-$0f, no need to check for
that!

Instead of the lda Table,x one could use pla if the data is on the stack and no interrupt can take
place during this code snippet.Then dex should be replaced by e.g. sbx #$11 to bring the SP to a
safe area, to ensure the data on the stack is not messed up in other parts of the code.

NOP (NPO)

Type: no effect

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$1A NOP No operation 1 2

$3A NOP No operation 1 2

$5A NOP No operation 1 2

$7A NOP No operation 1 2

$DA NOP No operation 1 2

$FA NOP No operation 1 2

NOP (DOP, SKB)

Type: no effect

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$80 NOP #imm Fetch #imm 2 2

$82 NOP #imm Fetch #imm 2 2

$C2 NOP #imm Fetch #imm 2 2

$E2 NOP #imm Fetch #imm 2 2

$89 NOP #imm Fetch #imm 2 2

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$04 NOP zp Fetch {addr} 2 3

$44 NOP zp Fetch {addr} 2 3

$64 NOP zp Fetch {addr} 2 3

- 34 -

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$14 NOP zp, x Fetch {addr} 2 4

$34 NOP zp, x Fetch {addr} 2 4

$54 NOP zp, x Fetch {addr} 2 4

$74 NOP zp, x Fetch {addr} 2 4

$D4 NOP zp, x Fetch {addr} 2 4

$F4 NOP zp, x Fetch {addr} 2 4

Operation: NOP zp and NOP zp,x actually perform a read operation. It's just that the value read
is not stored in any register.

Note: NOP opcodes $82, $C2, $E2 may be JAMs. Since only one source claims this, and no other
sources corroborate this, it must be true on very few machines. On all others, these opcodes always
perform 'no operation'. It is perhaps a good idea to avoid using them anyway.

NOP (TOP, SKW)

Type: no effect

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$0C NOP abs Fetch {addr} 3 4

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$1C NOP abs, x Fetch {addr} 3 4 (+1)

$3C NOP abs, x Fetch {addr} 3 4 (+1)

$5C NOP abs, x Fetch {addr} 3 4 (+1)

$7C NOP abs, x Fetch {addr} 3 4 (+1)

$DC NOP abs, x Fetch {addr} 3 4 (+1)

$FC NOP abs, x Fetch {addr} 3 4 (+1)

Operation: These actually perform a read operation. It's just that the value read is not stored in any
register. Further, opcode $0C uses the absolute addressing mode. The two bytes which follow it
form the absolute address. All the other 3 byte NOP opcodes use the absolute indexed X addressing
mode. If a page boundary is crossed, the execution time of one of these NOP opcodes is upped to 5
clock cycles.

Test code: Lorenz-2.15/nopa.prg, Lorenz-2.15/nopax.prg, Lorenz-
2.15/nopb.prg, Lorenz-2.15/nopn.prg, Lorenz-2.15/nopz.prg, Lorenz-
2.15/nopzx.prg

- 35 -

Example: acknowledge IRQ

- 36 -

If for some reason you want to acknowledge a timer IRQ and can not afford changing a register or
the CPU status, you can use the fact that some of these NOPs actually perform a read operation:

NOP $DCOD ;0C 0D DC

JAM (KIL, HLT, CIM)

Type: lock-up

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$02 JAM CPU lock-up 1 -

$12 JAM CPU lock-up 1 -

$22 JAM CPU lock-up 1 -

$32 JAM CPU lock-up 1 -

$42 JAM CPU lock-up 1 -

$52 JAM CPU lock-up 1 -

$62 JAM CPU lock-up 1 -

$72 JAM CPU lock-up 1 -

$92 JAM CPU lock-up 1 -

$B2 JAM CPU lock-up 1 -

$D2 JAM CPU lock-up 1 -

$F2 JAM CPU lock-up 1 -

Operation: When one of these opcodes is executed, the byte following the opcode will be fetched,
data- and address bus will be set to $ff (all 1s) and program execution ceases. No hardware
interrupts will execute either. Only a reset will restart execution. This opcode leaves no trace of any
operation performed! No registers or flags affected.

Test code: CPU/cpujam/cpujamXX.prg

Example: stop execution

- 37 -

Sometimes in a very memory constrained situation (like a 4k demo), you may want to stop
execution of whatever is running with least effort – this can be achieved by using one of the JAM
opcodes. Keep in mind though that only the CPU will stop.

LDA #0

STA $D418

JAM ;02

Unstable Opcodes

Out of all opcodes, just seven fall into the so called 'unstable' category. They can be used, but extra
care must be taken to work around the unstable behaviour, so read the following carefully :)

'unstable address high byte' group

There are five opcodes in this group. None of these opcodes affect the accumulator, the X register,
the Y register, or the processor status register. They have two instabilities which have to be
'disarmed' by careful programming.

• If the target address crosses a page boundary because of indexing, the instruction may not
store at the intended address, instead the high byte of the target address turns into the value
stored. (some sources say 'or at a different address altogether'). For this reason you should
generally keep your index in a range that page boundaries are not crossed. This
anomaly seems to exist on some chips only.

• Sometimes the actual value is stored in memory and the AND with <addrhi+1> part drops
off (ex. SHY becomes true STY). This happens when the RDY line is used to stop the CPU
(pulled low), i.e. either a 'bad line' or sprite DMA starts, in the second half of the cycle
following the opcode fetch. 'For example, it never seems to occur if either the screen is
blanked or C128 2MHz mode is enabled.' For this reason you will have to choose a
suitable target address based on what kind of values you want to store. 'For $fe00
there's no problem, since anding with $ff is the same as not anding. And if your values don't
mind whether they are anded, e.g. if they are all $00-$7f for shy $7e00,x, there is also no
difference whether the and works or not.' CAUTION: emulated correctly in VICE since
revision r30092 (5/11/2015)

'To explain what's going on take a look at LDA ABX and STA ABX first.

 LDA ABX takes 4 cycles unless a page wrap occurred (address+X lies in another page than
address) in which case the value read during the 4th cycle (which was read with the original high
byte) is discarded and in the 5th cycle a read is made again, this time from the correct address.
During the 4th cycle the high address byte is incremented in order to have a correct high byte if the
5th cycle is necessary. The byte read from memory is buffered and copied to A during the read of
the next command's opcode.

 But there's a problem with storage commands: they need to put the value to write on the internal
bus which is used for address computations as well. To avoid collisions STA ABX contains a fix-up
which makes it always take 5 cycles (the value is always written in the 5th cycle as the high byte is
computed in the 4th cycle).

 This fix-up requires some transistors on the CPU; the guys at MOS forgot (or were unable?) to
make them detect STX ABY (which becomes SHX) and a few others, they are missing that fix-up so
this results in a collision between the value and high address byte computation.'

- 38 -

SHA (AXA, AHX)

Type: Combinations of STA/STX/STY

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$93 SHA (zp),y {addr} = A & X & {H+1} 2 6

$9F SHA abs,y {addr} = A & X & {H+1} 3 5

Operation: This opcode stores the result of A AND X AND the high byte of the target address of
the operand +1 in memory.

Instabilities:
• sometimes the &{H+1} drops off.
• page boundary crossing may not work as expected (the page where the value is stored may

be equal to the value stored).

Test code:
• general: Lorenz-2.15/shaay.prg, Lorenz-2.15/shaiy.prg
• &H drop off: CPU/sha/shazpy2.prg CPU/sha/shazpy3.prg

CPU/sha/shaabsy2.prg CPU/sha/shaabsy3.prg
• page boundaries: CPU/sha/shazpy1.prg CPU/sha/shaabsy1.prg

- 39 -

Example:

SHA $7133,Y ;9F 33 71

Equivalent Instructions:

PHP ; save flags and accumulator
PHA
STX $02 ; hack which is needed because there is
AND $02 ; no 'AND-WITH-X' instruction
AND #$72 ; High-byte of Address + 1
STA $7133,Y
LDX $02 ; restore X-register
PLA ; restore flags and accumulator
PLP

Note: Memory location $02 would not be altered by the SHA opcode and it would not use the
stack.

Example: SAX abs, y

Example: SAX (zp), y

- 40 -

When using $FE00 as address, the value stored would be ANDed by $FF and the SHA turns into a
SAX:

SHA $FE00,Y ; SAX $FE00,Y

When using $FE00 as address, the value stored would be ANDed by $FF and the SHA turns into a
SAX:

LDA #$FE
STA $03
LDA #$00
STA $02
...
SHA ($02),Y ; SAX ($02),Y

SHX (A11, SXA, XAS)

Type: Combinations of STA/STX/STY

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$9E SHX abs,y {addr} = X & {H+1} 3 5

Operation: AND X register with the high byte of the target address of the argument + 1. Store the
result in memory.

Instabilities:
• sometimes the &{H+1} drops off.
• page boundary crossing may not work as expected (the page where the value is stored may

be equal to the value stored).

Test code:
• general: CPU/asap/cpu_shx.prg, Lorenz-2.15/shxay.prg
• &H drop off: CPU/shxy/shxy2.prg, CPU/shxy/shxy3.prg
• page boundaries: CPU/shxy/shxy1.prg

Simulation links:
• &{H+1} drop off:

http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=20&d=a20fa0009e0211&logmore=rdy&rdy0=15&rdy1=16

• page boundary crossing anomaly:
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=18&d=a20Fa0ff9e0211

- 41 -

Example:

SHX $6430,Y ;9E 30 64

Equivalent Instructions:

PHP ; save flags and accumulator
PHA
TXA
AND #$65 ; High byte of Address + 1
STA $6430,Y
PLA ; restore flags and accumulator
PLP

Note: The SHX opcode would not use the stack.

http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=18&d=a20Fa0ff9e0211
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=20&d=a20fa0009e0211&logmore=rdy&rdy0=15&rdy1=16
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=20&d=a20fa0009e0211&logmore=rdy&rdy0=15&rdy1=16

Example: STX abs, y

- 42 -

When using $FE00 as address, the value stored would be ANDed by $FF and the SHX turns into a
STX:

SHX $FE00,Y ; STX $FE00,Y

SHY (A11, SYA, SAY)

Type: Combinations of STA/STX/STY

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$9C SHY abs,x {addr} = Y & {H+1} 3 5

Operation: AND Y register with the high byte of the target address of the argument + 1. Store the
result in memory.

Instabilities:
• sometimes the &{H+1} drops off.
• page boundary crossing may not work as expected (the page where the value is stored may

be equal to the value stored).

Test code:
• general: CPU/asap/cpu_shx.prg, Lorenz-2.15/shyax.prg
• &H drop off: CPU/shxy/shyx2.prg, CPU/shxy/shyx3.prg
• page boundaries: CPU/shxy/shyx1.prg

- 43 -

Example:

SHY $7700,X ;9C 00 77

Equivalent Instructions:

PHP ; save flags and accumulator

PHA

TYA

AND #$78 ; High byte of Address + 1

STA $7700,X

PLA ; restore flags and accumulator

PLP

Note: the SHY opcode would not use the stack.

Example: STY abs, x

- 44 -

When using $FE00 as address, the value stored would be ANDed by $FF and the SHY turns into a
STY:

SHY $FE00,X ; STY $FE00,X

TAS (XAS, SHS)

Type: Combinations of STA/TXS and LDA/TSX

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$9B TAS abs,y SP = A & X {addr} = SP & {H+1} 3 5

Operation: This opcode ANDs the contents of the A and X registers (without changing the contents
of either register) and transfers the result to the stack pointer. It then ANDs that result with the
contents of the high byte of the target address of the operand +1 and stores that final result in
memory.

Instabilities:
• sometimes the &{H+1} drops off.
• page boundary crossing may not work as expected (the page where the value is stored may

be equal to the value stored).

Test code:
• general: Lorenz-2.15/shsay.prg
• &H drop off: CPU/shs/shsabsy2.prg, CPU/shs/shsabsy3.prg
• page boundaries: CPU/shs/shsabsy1.prg

- 45 -

Example:

TAS $7700,Y ;9B 00 77

Equivalent Instructions:

PHA ; save accumulator
STX $02 ; hack, since there is no 'AND WITH X'
AND $02 ; instruction
TAX
AND #$78 ; High-byte of Address + 1
STA $7700,Y
PLA ; restore accumulator
TXS
LDX $02 ; TAS would not modify the flags

Note: The above code does in many ways not accurately resemble how the TAS opcode works
exactly, memory location $02 would not be altered, the stack would not be used, and no processor
flags would be modified.

'Magic Constant' group

The two opcodes in this group are combinations of an immediate and an implied command, and
involve a highly unstable 'magic constant', which is chip and/or temperature dependent.

ANE (XAA)

Type: Combination of an immediate and an implied command

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$8B ANE #imm A = (A | {CONST}) & X & #{imm} 2 2 X X

Operation: This opcode ORs the A register with CONST, ANDs the result with X. ANDs the result
with an immediate value, and then stores the result in A.

Instability: CONST is chip- and/or temperature dependent (common values may be $00, $ff, $ee
…)

for some very detailed info on how this opcode works look here:
http://visual6502.org/wiki/index.php?title=6502_Opcode_8B_(XAA,_ANE)

Do not use ANE with any other immediate value than 0, or when the accumulator value is $ff
(both takes the magic constant out of the equation)! (Or, more generalized, these are safe if all
bits that could be 0 in A are 0 in either the immediate value or X or both.)

Test code:
• general: CPU/asap/cpu_ane.prg, Lorenz-2.15/aneb.prg
• temperature dependency: general/ane-lax/ane-lax.prg

- 46 -

Example:

ANE #{IMM} ;8B {IMM}

Equivalent Instructions:

ORA #{CONST}

AND #{IMM}

STX $02 ; hack because there is no 'AND WITH X'

AND $02 ; instruction

Note: Memory location $02 would not be altered by the ANE opcode.

http://visual6502.org/wiki/index.php?title=6502_Opcode_8B_(XAA,_ANE

Example: clear A

Example: A = X AND immediate

Example: read the 'magic constant'

- 47 -

ANE #0 ; 8B 00

is equivalent to

LDA #0

… and is safe to use as using 0 as the immediate value takes the 'magic constant' out of the
equation.

To determine the 'magic constant' which is in effect on your particular machine, you can do this:

LDA #0

LDX #$ff

ANE #$ff ; A contains the magic constant

This is mostly useful for experimenting and proving the constant is actually different on different
set-ups. Do not rely on this value! It may not be stable even on the same chip and depend on
temperature and/or the supplied voltage.

;LDA #$ff assuming A=$ff from previous operation

ANE #$0f ; 8B 0f A = (A | const) & X & $0f

is equivalent to

TXA

AND #$0f

… and is safe to use as a value of $ff in accumulator takes the 'magic constant' out of the equation.

LAX #imm (ATX, LXA, OAL, ANX)

Type: Combination of an immediate and an implied command

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$AB LAX #imm A,X = (A | {CONST}) & #{imm} 2 2 X X

Operation: This opcode ORs the A register with CONST, ANDs the result with an immediate
value, and then stores the result in both A and X.

Instability: CONST is chip- and/or temperature dependent (common values may be $00, $ff, …)

Do not use LAX #imm with any other immediate value than 0, or when the accumulator value
is $ff (both takes the magic constant out of the equation)! (Or, more generalized, these are safe if
all bits that could be 0 in A are 0 in the immediate value.)

'The problem with LAX immediate is that its decode is a combination of LDA, LDX, and TAX. This
causes the current contents of the accumulator to be merged in with the value loaded from the data
bus. Normally, during an LDA or LDX instruction, it doesn't matter if the operand-input bus is
stable during the whole half-cycle for which they're enabled. Nothing is reading from the registers
while they are being loaded; as long as the bus has stabilized before the load-enable signal goes
away, the registers will end up with the correct value. The LAX opcode, however, enables the
'output accumulator' signal as well as the 'feed output bus to input bus' signal. My 6507
documentation doesn't show which buses have 'true' or 'inverted' logic levels, but a natural
implementation would likely use the opposite signal polarity for the output bus and input bus (so
the connections between them would be inverting buffers). Under that scenario, LAX would
represent a race condition to see which bus got a 'low' signal first. A variety of factors could
influence 'who wins' such a race.'

Test code:
• general: CPU/asap/cpu_anx.prg, Lorenz-2.15/lxab.prg
• temperature dependency: general/ane-lax/ane-lax.prg

- 48 -

Example:

LAX #{IMM} ;AB {IMM}

Equivalent Instructions:

ORA #{CONST}

AND #{IMM}

TAX

Example: clear A and X

Example: load A and X with same value

Example: read the 'magic constant'

- 49 -

; assuming A=$ff from previous operation

LAX #<value> ; AB <value>

is equivalent to:

LDA #<value>

TAX

… and is safe to use as a value of $ff in accumulator takes the 'magic constant' out of the equation.

To determine the 'magic constant' which is in effect on your particular machine, you can do this:

LDA #0

LAX #$ff ; A,X contain the magic constant

This is mostly useful for experimenting and proving the constant is actually different on different
set-ups. Do not rely on this value! It may not be stable even on the same chip and depend on
temperature and/or the supplied voltage.

LAX #0 ; AB 00

is equivalent to:

LDA #0

TAX

… and is safe to use as using 0 as the immediate value takes the 'magic constant' out of the
equation.

Unintended addressing modes

Absolute Y Indexed (R-M-W)

• 3 bytes, 7 cycles

db lo hi DCP abs, y
fb lo hi ISC abs, y
7b lo hi RRA abs, y
1b lo hi SLO abs, y
5b lo hi SRE abs, y

Cycle Address-Bus Data-Bus Read/Write

1 PC Op Code Fetch R

2 PC + 1 Absolute Address Low R

3 PC + 2 Absolute Address High R

4 < AAH, AAL + Y > < Internal Operation > R

5 AA + Y Data Low R

6 AA + Y Old Data Low W

7 AA + Y New Data Low W

Simulation Link: http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=22&d=a0d0db10eaeaeaeaeaeaeaeaeaeaeaea1280

equivalent legal mode: Absolute X Indexed (R-M-W)

• 3 bytes, 7 cycles

ASL abs, x DEC abs, x INC abs, x LSR abs, x ROL abs, x ROR abs, x

2f lo hi RLA abs, x

Cycle Address-Bus Data-Bus Read/Write

1 PC Op Code Fetch R

2 PC + 1 Absolute Address Low R

3 PC + 2 Absolute Address High R

4 < AAH, AAL + X > < Internal Operation > R

5 AA + X Data Low R

6 AA + X Old Data Low W

7 AA + X New Data Low W

- 50 -

http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=22&d=a0d0d310eaeaeaeaeaeaeaeaeaeaeaea1280
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=22&d=a0d0d310eaeaeaeaeaeaeaeaeaeaeaea1280

Zeropage X Indexed Indirect (R-M-W)

• 2 bytes, 8 cycles

C3 zp DCP (zp, x)
E3 zp ISC (zp, x)
23 zp RLA (zp, x)
63 zp RRA (zp, x)
03 zp SLO (zp, x)
43 zp SRE (zp, x)

Cycle Address-Bus Data-Bus Read/Write

1 PC Op Code Fetch R

2 PC + 1 Direct Offset R

3 < PC + 1 > < Internal Operation > R

4 DO + X Absolute Address Low R

5 DO + X + 1 Absolute Address High R

6 AA Data Low R

7 AA Old Data Low W

8 AA New Data Low W

Simulation Link: http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=22&d=a2d0c310eaeaeaeaeaeaeaeaeaeaeaea1280

related legal mode: Zeropage X Indexed Indirect

• 2 bytes, 6 cycles

ADC (zp, x) AND (zp, x) CMP (zp, x) EOR (zp, x) LDA (zp, x) ORA (zp, x) SBC (zp, x)
STA (zp, x)

a3 zp LAX (zp, x)
83 zp SAX (zp, x)

Cycle Address-Bus Data-Bus Read/Write

1 PC Op Code Fetch R

2 PC + 1 Direct Offset R

3 < PC + 1 > < Internal Operation > R

4 DO + X Absolute Address Low R

5 DO + X + 1 Absolute Address High R

6 AA Data Low R/W

- 51 -

http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=22&d=a0d0d310eaeaeaeaeaeaeaeaeaeaeaea1280
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=22&d=a0d0d310eaeaeaeaeaeaeaeaeaeaeaea1280

Zeropage Indirect Y Indexed (R-M-W)

• 2 bytes, 8 cycles

D3 zp DCP (zp), y
F3 zp ISC (zp), y
33 zp RLA (zp), y
73 zp RRA (zp), y
13 zp SLO (zp), y
53 zp SRE (zp), y

Cycle Address-Bus Data-Bus Read/Write

1 PC Op Code Fetch R

2 PC + 1 Direct Offset Fetch R

3 DO Absolute Address Low R

4 DO + 1 Absolute Address High R

5 < AAH, AAL + Y > < Internal Operation > R

6 AA + Y Data Low R

7 AA + Y Old Data Low W

8 AA + Y New Data Low W

Simulation Link: http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=22&d=a0d0d310eaeaeaeaeaeaeaeaeaeaeaea1280

related legal mode: Zeropage Indirect Y Indexed

• 2 bytes, 5+1 cycles

ADC (zp), y AND (zp), y CMP (zp), y EOR (zp), y LDA (zp), y ORA (zp), y SBC (zp), y
STA (zp), y

b7 zp LAX (zp), y

Cycle Address-Bus Data-Bus Read/Write

1 PC Op Code Fetch R

2 PC + 1 Direct Offset R

3 DO Absolute Address Low R

4 DO + 1 Absolute Address High R

+1 (*) < AAH, AAL + Y > < Internal Operation > R

5 AA Data Low R/W

(*) Add 1 cycle for indexing across page boundaries, or write

- 52 -

http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=22&d=a0d0d310eaeaeaeaeaeaeaeaeaeaeaea1280
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=22&d=a0d0d310eaeaeaeaeaeaeaeaeaeaeaea1280

Appendix

Opcode naming in different Assemblers
Opc imp imm zp zpx zpy izx izy abs abx aby ind rel KickAss Acme ca65 dasm 64tass

SLO $07 $17 $03 $13 $0F $1F $1B SLO SLO SLO SLO SLO

RLA $27 $37 $23 $33 $2F $3F $3B RLA RLA RLA RLA RLA

SRE $47 $57 $43 $53 $4F $5F $5B SRE SRE SRE SRE SRE

RRA $67 $77 $63 $73 $6F $7F $7B RRA RRA RRA RRA RRA

SAX $87 $97 $83 $8F SAX SAX SAX SAX SAX

LAX $A7 $B7 $A3 $B3 $AF $BF LAX LAX LAX LAX LAX

DCP $C7 $D7 $C3 $D3 $CF $DF $DB DCP DCP DCP DCP DCP, DCM

ISC $E7 $F7 $E3 $F3 $EF $FF $FB ISC ISC ISC ISB ISC, INS, ISB

ANC $0B ANC ANC ANC ANC ANC

ANC $2B ANC2

ALR $4B ALR ASR ALR ASR ALR, ASR

ARR $6B ARR ARR ARR ARR ARR

SBX $CB AXS SBX AXS SBX AXS, SBX

SBC $EB SBC2

SHA $93 $9F AHX SHA SHA SHA AHX, SHA

SHY $9C SHY SHY SHY SHY SHY

SHX $9E SHX SHX SHX SHX SHX

TAS $9B TAS TAS TAS SHS TAS, SHS

LAS $BB LAS LAS LAS LAS LAS, LAE, LDS

LAX $AB LAX LXA LAX LXA LAX, LXA

ANE $8B XAA ANE ANE ANE XAA, ANE

NOP $0C $1C TOP NOP NOP NOP

NOP $80 $04 $14 DOP NOP NOP NOP

NOP $1A

NOP $3A $82 $44 $34 $3C

NOP $5A $C2 $64 $54 $5C

NOP $7A $E2 $74 $7C

NOP $DA $89 $D4 $DC

NOP $FA $F4 $FC

JAM $02 $12 $22 $32 $42 $52 $62 $72 $92 $B2 $D2 $F2 JAM JAM JAM

- 53 -

Combined Examples

negating a 16bit number

Another trick that makes use of the SBX command is the negation of a 16 bit number:

LAX #$00 ;should be safe, as #$00 is loaded

SBX #lo ;sets carry automatically for upcoming sbc

SBC #hi

; negated value is in A/X

One might also think of extending this trick to negate two 8 bit numbers (A, X) at a time.

Example

 A second case in which to use SBX is in combination with LAX, for example when doing:

LDA $02

CLC

ADC #$08

TAX

that can be easily substituted by:

LAX $02 ;A = X = M [$02]

SBX #$f8 ;X = (A & X) - -8

So we saved 4 cycles here, as the state of the carry is of no interest for the subtract done by SBX,
which is one of its big advantages. Thus we could also fake an ADD or SUB with that command.
The and-operation is not needed here, but does not harm. If there's use for it, just let A or X be
loaded with the right value for the and-mask.

- 54 -

Multiply 8bit * 2 ^ n with 16bit result

If you want to set up a reference into a table of 8-byte objects use:

LAX Index,y ; 4 A,X = (index+Y)

AND #%00000111 ; 2

STA AddressHi ; 3 store A & %00000111

LDA #%11111000 ; 2

SAX AddressLo ; 3 store X & %11111000

; = 14 cycles

Which is a hell of a lot faster than multiplying by 8, and just means storing the values in the index
in a funny bit order (43210765)

- 55 -

6 sprites over FLI

The '6 sprites over FLI' routine used in 'Darwin' is based on the following code. It uses unintended
Read-Modify-Write opcodes since they have a side-effect on the accumulator. This is needed
because there is no time to load it explicitly with LDA #. 'Finding this combination with usable
side-effects took 6 months (duration, not effort) and the game to find a second solution has been
rightfully named FLI-Sudoku :)'

First column in the comments show cycles, second the actual value written, and third the effective
bits.

; A=$A0 X=$36 Y=$21

; $d018=$1f $dd00=$3d $dd02=$36

STA $D011 ;4 A0 (20)

SRE $DD02 ;6 1b (03) A:A0 -> BB

STY $D011 ;4 21 (21)

ASL $D018 ;6 3f (38)

SAX $D011 ;4 32 (22)

STY $DD02 ;4 21 (01)

STA $D011 ;4 BB (23)

SRE $D018 ;6 1f (18) A:BB -> A4

STA $D011 ;4 A4 (24)

RRA $DD02 ;6 90 (00) A:A4 -> 35

STA $D011 ;4 35 (25)

SLO $D018 ;6 3f (38) A:35 -> 3F

STX $D011 ;4 36 (26)

STX $DD02 ;4 36 (02)

STA $D011 ;4 3F (27)

SRE $D018 ;6 1f (18) A:3F -> 20

- 56 -

This block is repeated for every 8 lines of the graphics area, with every second block using $20 as a
start value for the accumulator like this:

; A=$20 $d018=$1f $dd02=$36

STA $D011 ;4 20 (20)

SRE $DD02 ;6 1b (03) A:20 -> 3B

STY $D011 ;4 21 (21)

ASL $D018 ;6 3f (38)

SAX $D011 ;4 32 (22)

STY $DD02 ;4 21 (01)

STA $D011 ;4 3B (23)

SRE $D018 ;6 1f (18) A:3B -> 24

STA $D011 ;4 24 (24)

RRA $DD02 ;6 90 (00) A:24 -> B5

STA $D011 ;4 B5 (25)

SLO $D018 ;6 3f (38) A:B5 -> BF

STX $D011 ;4 36 (26)

STX $DD02 ;4 36 (02)

STA $D011 ;4 BF (27)

SRE $D018 ;6 1f (18) A:BF -> A0

; A=$A0 $d018=$1f $dd02=$36

- 57 -

References

• http://www.oxyron.de/html/opcodes02.html

• http://www.ataripreservation.org/websites/freddy.offenga/illopc31.txt

• http://www.ffd2.com/fridge/docs/6502-NMOS.extra.opcodes

• http://visual6502.org/wiki/index.php?title=6502_Unsupported_Opcodes

• http://www.pagetable.com/?p=39

• http://codebase64.org/doku.php?id=base:decrease_x_register_by_more_than_1

• http://codebase64.org/doku.php?id=base:some_words_about_the_anc_opcode

• http://codebase64.org/doku.php?id=base:advanced_optimizing

• http://www.atariage.com/forums/topic/168616-lxa-stable/#entry2092077

• Emulator Test-suite by Wolfgang Lorenz

• Test programs by Poitr Fusik

• First CSDb "Unintended OpCode coding challenge": http://csdb.dk/event/?id=2417

- 58 -

http://csdb.dk/event/?id=2417
http://www.atariage.com/forums/topic/168616-lxa-stable/#entry2092077
http://codebase64.org/doku.php?id=base:advanced_optimizing
http://codebase64.org/doku.php?id=base:some_words_about_the_anc_opcode
http://codebase64.org/doku.php?id=base:decrease_x_register_by_more_than_1
http://www.pagetable.com/?p=39
http://visual6502.org/wiki/index.php?title=6502_Unsupported_Opcodes
http://www.ffd2.com/fridge/docs/6502-NMOS.extra.opcodes
http://members.chello.nl/taf.offenga/illopc31.txthttp://www.ataripreservation.org/websites/freddy.offenga/illopc31.txt
http://www.oxyron.de/html/opcodes02.html

Greets and Thanks

• Segher

• Bitbreaker/Oxyron

• Graham/Oxyron

• Mist/R.O.L.E.

• pwsoft

• Ninja/The Dreams

• Count Zero/Cyberpunx

• Unseen/VICE Team

• TLR/VICE Team

• Krill/Plush

• Wolfgang Lorenz

• WoMo

• 0xF/Taquart

• Soci/Singular^VICE Team

• Peiselulli/TRSI^Oxyron

• SvOlli/XayaX

• Marco Baye

• Wilfred Bos

• Kabuto/Latency

• Color Bar

• JAC!

• … and all contributors to codebase64, visual6502, VICE and last not least the dark knights
behind the scenes who shall remain unmentioned - you know who you are.

- 59 -

Wanted

This document could still be improved and extended, contributions welcome! if you want to help
send your contributions to groepaz@gmx.net !

• More examples (most interesting would be examples for the opcodes that still have none, i.e.
RRA, and especially the weird TAS)

• More/better test cases:

◦ Some opcodes, such as ARR, should also be tested on a disk drive while data is being
read.

◦ 'unstable address hi byte' opcodes' page boundary crossing behaviour needs to be
verified on more CPUs. The anomaly described in some sources seems to exist on some
machines only.

• Experienced 6502 coders from other platforms (Atari 2600/800, Apple II, VIC-20, Plus 4
…) who port the test cases and check them on other 6502 variants and platforms.

• ' For the status-bits you often refer to standard behaviour of other instructions. Would be
nice to have a chapter with 'default flag behaviour' or something like that. As especially the
decimal modes do some weird things on a 6502/6510 related to the flags. And that might not
be common knowledge.'

- 60 -

mailto:groepaz@gmx.net

History

• December 24th, 2017 (V0.92) – Added a couple unusual Mnemonics used by the Atari-
centric MAD-Assembler, use “Andale Mono” instead of “Aerial Mono” - the later would
produce broken ligatures. A few formatting fixes. Fixed description of the page-crossing
anomaly of “unstable address high byte” group.

• December 24th, 2016 (V0.91) – Fixed some typos, added a few more examples.

• December 24th, 2015 (V0.9) – fixed cosmetical issues (justification), fixed link(s) in
references, added notes on ANE/LAX#imm usage, added chapter about unintended
addressing modes, added references to test code from 64doc.txt, added note on decimal flag
for RRA and ISC, fixed error in ANE example, added examples for RLA and LAS
(including great explanation by Color Bar, thanks!)

• December 24th, 2014 – first public release

• November 2014 – finally found the time to clean up this document and showed it to a bunch
of people for proof reading (unreleased)

• some time 2013 – started pasting together various information for personal use

The Truth is out there

- 61 -

	Preface
	Scope of this Document
	Intended Audience
	License
	What you get
	Naming Conventions
	Address-Mode Abbreviations
	Mnemonics

	Unintended Opcodes
	Overview
	Types
	Combinations of two operations with the same addressing mode
	Combinations of an immediate and an implied command
	Combinations of STA/STX/STY
	Combinations of STA/TXS and LDA/TSX
	No effect
	Lock-up

	Stable Opcodes
	SLO (ASO)
	Example:

	RLA (RLN)
	Example: scroll over a background layer

	SRE (LSE)
	Example: 8bit 1-of-8 counter

	RRA (RRD)
	SAX (AXS, AAX)
	Example: store values with mask
	Example: update Sprite Pointers

	LAX
	Example: load A and X with same value

	DCP (DCM)
	Example: decrementing loop counter
	Example: decrementing 16bit counter

	ISC (ISB, INS)
	Example: incrementing loop counter
	Example:

	ANC
	Example: implicit enforcement of carry flag state
	Example: remembering a bit

	ALR (ASR)
	Example:
	Example: fetch 2 bits from a byte
	Example:

	ARR
	Example: rotating 16 bit values
	Example:
	Example: shift zeros or ones into accumulator

	SBX (AXS, SAX)
	Example: decrement X by more than 1
	Example: decrement nibbles
	Example: apply a mask to an index

	SBC (USBC)
	LAS (LAR)
	Example: cycle an index within bounds

	NOP (NPO)
	NOP (DOP, SKB)
	NOP (TOP, SKW)
	Example: acknowledge IRQ

	JAM (KIL, HLT, CIM)
	Example: stop execution

	Unstable Opcodes
	'unstable address high byte' group
	SHA (AXA, AHX)
	Example: SAX abs, y
	Example: SAX (zp), y

	SHX (A11, SXA, XAS)
	Example: STX abs, y

	SHY (A11, SYA, SAY)
	Example: STY abs, x

	TAS (XAS, SHS)

	'Magic Constant' group
	ANE (XAA)
	Example: clear A
	Example: A = X AND immediate
	Example: read the 'magic constant'

	LAX #imm (ATX, LXA, OAL, ANX)
	Example: clear A and X
	Example: load A and X with same value
	Example: read the 'magic constant'

	Unintended addressing modes
	Absolute Y Indexed (R-M-W)
	Zeropage X Indexed Indirect (R-M-W)
	Zeropage Indirect Y Indexed (R-M-W)

	Appendix
	Opcode naming in different Assemblers
	Combined Examples
	negating a 16bit number
	Example
	Multiply 8bit * 2 ^ n with 16bit result
	6 sprites over FLI

	References
	Greets and Thanks
	Wanted
	History

