Log inRegister an accountBrowse CSDbHelp & documentationFacts & StatisticsThe forumsAvailable RSS-feeds on CSDbSupport CSDb Commodore 64 Scene Database
 Welcome to our latest new user Harvey ! (Registered 2024-11-25) You are not logged in - nap
CSDb User Forums


Forums > C64 Coding > New VSP discovery
2013-07-19 21:01
lft

Registered: Jul 2007
Posts: 369
New VSP discovery

First off, this is what we already knew: VSP causes the VIC chip to briefly
place a logically undefined value on the DRAM address lines during the
halfcycle following the write to d011. If the undefined value coincides with
the RAS signal, every memory cell with an xxx7 or xxxf address is at risk of
getting corrupted. The relative timing of the undefined value and RAS depends
on several factors including temperature.

We also knew that the undefined value could be delayed slightly if VSP was
triggered by setting the DEN bit instead of modifying YSCROLL. This was enough
to avoid a crash on some machines.

I wanted to investigate whether there were other ways of controlling the timing
of the undefined value. Based on a combination of educated guesswork, luck and
plenty of trial-and-error, I could observe the following: The timing depends on
the specific 3-bit value that is written to YSCROLL, as well as the 3-bit value
that was stored in YSCROLL previously.

This means that we can trigger VSP using one of 56 methods (eight different
YSCROLL values for various rasterlines, seven non-matching YSCROLL values to
switch from), each with slightly different timing.

Using the techniques from my Safe VSP demo, I created a tool that would trigger
VSP many times, check if memory got corrupted, and keep track of the number of
crashes caused by each of the 56 methods. I then looked for a pattern in these
statistics.

Intriguingly, if I arranged the 56 crash counters in a grid with the vertical
axis corresponding to the rasterline and the horizontal axis corresponding to
the exclusive-or between the rasterline and the dummy value that was stored in
d011 prior to the VSP, then the crashes would tend to occur only in a subset of
the columns. When my crash prone c64 is powered on, the VIC chip is cold, and
there are no crashes. Within a minute, crashes start to appear in column 7
(meaning that all three bits of YSCROLL were flipped). As the chip heats up,
more crashes begin to appear in columns 3, 5 and 6 (two bits flipped). After
several more minutes, crashes show up also in columns 1, 2 and finally 4 (a
single bit flipped), but by this time, there are no longer any crashes in
columns 5, 6 or 7. Finally, when the VIC chip has reached a stable working
temperature, my machine no longer crashes.

This is what it might look like four minutes after power-on:



Now, let me stress that I only have one VSP-crashing c64, and these results
might not carry over to other machines. I hope they do, though. I would very
much like you (yes, you!) to run VSP Lab (described below) on your crash prone
machines and report what happens.

Is this useful? Short answer: Yes, very. But it hinges on whether the behaviour
of my c64 is typical. Even without the mentioned regularity in the columns, it
would be possible to find a few safe combinations for a given machine and a
given temperature. But the regularity makes it so much more practical and also
easier to explain to all C64 users, not just coders.

Let's refer to the seven columns as "VSP channels". For a given machine at a
given temperature, some of these channels are safe, and possibly some of them
are unsafe. It takes about 5-10 minutes for the VIC chip to reach its working
temperature. If you know that e.g. VSP channel #5 is safe on your machine, and
you can somehow tell a demo or game to use that specific channel, then VSP
won't crash.

My measurement tool evolved into a program called VSP Lab, depicted above,
which you can use to find out which VSP channels are safe to use on your
machine. It triggers a lot of VSP operations and visualises the crashes in a
grid, where each column corresponds to a VSP channel. Remember that a cold and
a hot VIC behave differently, so don't trust the measurements until about ten
minutes after power-on. You can reset the grid highlights using F1 to see if
channels which were unsafe before have become safe.

Demos and games could prompt the user for a VSP channel to use, or try to
determine it automatically using the same technique that VSP Lab is based on.

From a coding point of view, all you then have to do in order to implement
crash-free VSP, is to prepare the value X that you'll write to d011 to trigger
VSP, and the value Y which is X ^ vsp_channel. Then, on the rasterline where
you want to do VSP, you just wait until the time is right and do:

        sty $d011
        stx $d011


On the VSP Lab disk image, there's a small demo effect that you can run. It
will ask you for a VSP channel to use, and if you give it a safe number, it
should not crash.

This technique is so simple and non-intrusive that it's quite feasible to patch
existing games and demos, VSP-fixing them.

Also, this discovery explains the old wisdom that if you attempt VSP more than
once per frame, the routine will be more likely to crash. Here's why: In a demo
effect, you typically perform VSP on a fixed rasterline, so the value you write
to d011 will be constant. It is reasonable to assume that the old value of
YSCROLL will also be constant. Therefore, a given VSP effect will consistently
end up in the same VSP channel. On a machine with N safe VSP channels, the
probability of survival is therefore p = N / 7. If you do VSP on two different
rasterlines, each VSP will likewise end up in a channel, but not necessarily
the same one. The probability that both end up in a safe channel is p*p. If we
assume that most crash prone machines have at least one safe channel, we have
0 < p < 1 and therefore p*p < p. Q.E.D. To verify this, I patched vice to
report the channel every time VSP was performed. Sure enough, VSP&IK+
consistently uses VSP channel 1, as does Royal Arte. Krestage 3 uses VSP
channel 2. The intro of Tequila Sunrise, which performs VSP twice per frame,
uses VSP channels 1 and 3, and so does Safe VSP.

Finally, I will attempt to explain the observed behaviour at the electronical
level. Suppose each bit of YSCROLL is continually compared to the corresponding
bit in the Y raster counter, using XOR gates. The outputs of the XOR gates are
routed to a triple-input NOR gate, the output of which is therefore high if and
only if the three bits match. A triple-input NOR gate in NMOS would consist of
a pull-up resistor and three pull-down transistors. But the output of the NOR
gate is not a perfect boolean signal, because the transistors are not ideal.
When they are closed, they act like small-valued resistors, pulling the output
towards -- but not all the way down to -- ground potential. When YSCROLL
differs from the raster position by three bits, all three transistors
contribute, and the output reaches a low voltage. When the difference is two
bits, only two transistors pull, so the output voltage is slightly higher. For
a one-bit difference, the voltage is even higher (but still a logic zero, of
course). When we trigger VSP, all transistors stop pulling the voltage down,
and because of the resistor, the output voltage will begin to rise. But the
time it needs in order to rise to a logic one depends on the voltage at which
it begins. Thus, the more bits that change in YSCROLL, the longer it takes
until the match signal is asserted.

I have a fair amount of confidence in this theory, but need more data to
confirm it. And, once again, this is only of practical use if the average crash
prone machine has safe channels, like mine does. So please check your
equipment! I'm looking forward to your reports.
 
... 43 posts hidden. Click here to view all posts....
 
2013-07-20 15:57
hedning

Registered: Mar 2009
Posts: 4723
I just said that it may be a pattern, and that it might be interesting.
2013-07-20 16:05
tlr

Registered: Sep 2003
Posts: 1787
@lft: Very interesting read and a good test program!

@hedning: a plain reset does very little to the die temperature but a power cycle does.

This kind of thing might even be dependent on the difference in temperature between ICs.
2013-07-20 16:14
TPM

Registered: Jan 2004
Posts: 110
i do and don't understand this.. well.. i understand the basics ofcourse and i do know how IC's work, etc..

but i think it would be hard to get control by code, if temperatures and such influences are involved.

Why are you so sure, lft? Respect if you do, i like your post and test program big time anyway!
2013-07-20 16:23
chatGPZ

Registered: Dec 2001
Posts: 11359
well, if you know what variables (may) depend on temperature ... you maybe can take them out of the equatation so it does no more matter. (RE: lax#$00 :=))
2013-07-20 17:52
tlr

Registered: Sep 2003
Posts: 1787
What groepaz said. Very good example!
2013-07-20 22:58
Fungus

Registered: Sep 2002
Posts: 680
Nice program, I don't have any c64's to test it with anymore though. Too bad, as I would have liked to see the results...

Other than that, gremlins in the timing of c64 clocks. Maybe there can be some more research done on hw side, to maybe find a way to make the 64 power up more stable.
2013-07-21 06:05
ChristopherJam

Registered: Aug 2004
Posts: 1408
My c64c + RR + RR-net has been running for weeks with only the occasional power-cycle. It's not been power-cycled today (only reset), and the ambient temperature in my apartment has been between 15 and 19 degrees for the last three or four days.

I've been running VSP Lab for 48 minutes now, and it's been showing zeros across the board the entire time.
2013-07-21 10:29
Kabuto
Account closed

Registered: Sep 2004
Posts: 58
Quote:
Making a powercycle seems to make pretty random patterns, though.

I think I've read the reason for that in another thread, it was like: The master clock is divived by 9 and then multipled with 4 (or the like) to get the pixel clock and this isn't jitter-free. Depending on how this pattern (repeating every 4 pixels or the like) is aligned in respect to the 1 MHz clock (repeataing every 8 pixels) this can give different outcomes. This alignment is randomly chosen when the C64 is powered on but not affected by resets.
2013-07-21 12:22
ChristopherJam

Registered: Aug 2004
Posts: 1408
Ah, good point @Kabuto. I came across that issue when I was trying to do screencaps of which colours were produced by groups of three adjacent highres pixels at each of the 32 possible phase locations. I was getting consistent results when I was just resetting between tests, but as soon as I power-cycled my calibration went out the window. (so much for new colours :P)

It might be interesting to show a pair of crosshatched black & white characters onscreen ($55,aa,55,aa,55,aa,55,aa,55,aa) to see if there's any correlation between master clock phase and which channels cause errors, at least for machines that have different error behaviour between power-cycles.
2013-07-21 12:23
ChristopherJam

Registered: Aug 2004
Posts: 1408
Oh, also one of my spare c64cs has apparently died altogether, but my breadbox is showing no errors on any channel despite running VSP Lab within seconds of the first time I've powered it on in over a year.
Previous - 1 | 2 | 3 | 4 | 5 | 6 - Next
RefreshSubscribe to this thread:

You need to be logged in to post in the forum.

Search the forum:
Search   for   in  
All times are CET.
Search CSDb
Advanced
Users Online
GI-Joe/MYD!
Mike
sln.pixelrat
zscs
zzarko/Avatar
JackAsser/Booze Design
Acidchild/Padua
anonym/padua
St0rmfr0nt/Quantum
Sokrates
YPS
Guests online: 133
Top Demos
1 Next Level  (9.7)
2 13:37  (9.7)
3 Coma Light 13  (9.7)
4 Edge of Disgrace  (9.6)
5 Mojo  (9.6)
6 The Demo Coder  (9.6)
7 What Is The Matrix 2  (9.6)
8 Uncensored  (9.6)
9 Wonderland XIV  (9.6)
10 Comaland 100%  (9.6)
Top onefile Demos
1 Layers  (9.6)
2 Party Elk 2  (9.6)
3 Cubic Dream  (9.6)
4 Copper Booze  (9.6)
5 Libertongo  (9.5)
6 Rainbow Connection  (9.5)
7 Onscreen 5k  (9.5)
8 Morph  (9.5)
9 Dawnfall V1.1  (9.5)
10 It's More Fun to Com..  (9.5)
Top Groups
1 Performers  (9.3)
2 Booze Design  (9.3)
3 Oxyron  (9.3)
4 Nostalgia  (9.3)
5 Triad  (9.2)
Top Diskmag Editors
1 Magic  (9.8)
2 hedning  (9.6)
3 Jazzcat  (9.5)
4 Elwix  (9.1)
5 Remix  (9.1)

Home - Disclaimer
Copyright © No Name 2001-2024
Page generated in: 0.066 sec.